求职简历网 > 知识 >

轧辊堆焊

来源:求职简历网时间:2024-03-31 09:32:29编辑:皮带君

修复电瓶靠谱吗

有些失效的电池添加修复液可以修复,有些问题严重就报废。按电动车电池国家标准(JB/T10262-2001),容量低于标称容量70%为失效电池。电池修复液又称铅酸蓄电瓶修复液,电池活化剂,电池增容剂等。添加到失效的电动车电池,能恢复电池的容量,延长电池的使用寿命,提高电池各项性能的一种溶液。无需通过专业修复仪器,简单易操作。由于修复液的组成成份不同,其修复的效果也不同。添加小铜匠电池修复液后的电池,经过一次完全充放电,电池容量得到恢复,路程可增加5-15公里。经七次完全充放电后,电池容量恢复到90%以上,延长使用寿命一年左右。所有电池使用到一定寿命极限后,都会出现各种故障和失效现象。电动车行程开始缩短(或电池容量不低于70%),说明电池开始失水和硫化,应补水或添加小铜匠纳米碳溶胶电池活化剂。电动车行程缩短一半以内(或电瓶池量不低于50%),说明电池极板硫化严重,轻度软化。应马上添加小铜匠电池修复液。电动车行程缩短一半以上(或电池容量低于50%),说明电池极板硫化,软化严重。添加小铜匠电池修复液效果不明显,配合各类电池修复仪共同修复。

轧辊堆焊是什么,分类呢热轧辊跟刚轧辊有啥区别

疲劳层并不是固定的,主要和轧辊类型(板材还是长材)和轧辊最后一个使用期内过钢量有关。两者一般不是线性关系,在超出正常用量后疲劳层的深度增速大于过钢量的增速,但超过极限过钢量之后疲劳层就不再增加了(过钢量再增加,疲劳层的塑韧性会大幅下降,就容易出现疲劳层微裂纹了)。一般板材轧辊大致经验:四辊轧机支撑辊疲劳层在单边3mm以内,四辊轧机工作辊的疲劳层通常小于单边1.5mm;其他类型轧辊各有不同。但由于现场应用差异非常大,所以这种经验并不可靠。最简单的办法是检测轧辊硬度,这个方法比较可靠。首先确定轧辊工作层的原始硬度,由于疲劳层的硬度会明显升高高于原始硬度,所以可以根据硬度来判断疲劳层;如果硬度高于原始硬度就说明疲劳层还没有去除干净,如果降至原始硬度就说明疲劳层已经修磨干净。(建议车削轧辊的时候降低进刀量,尽量避免车削产生轧辊加工硬化,影响硬度值。)另外也可以测量轧辊表面的残余应力,这个需要专业工具,比较麻烦。


轧辊堆焊是什么,分类呢

在轧制生产中,轧辊与所轧金属直接接触,使金属产生塑性变形,是轧机的主要变形工具。轧辊是轧机大型消耗性不见,在整个生产过程中轧辊因磨损而消耗的部分约占轧辊总重量的10%~20%,而大量的轧辊消耗是由于修复过程中局部缺陷而导致报废的。因此,如何提高轧辊的使用寿命,对轧辊进行修旧利废,成为降低产品成本的一个重要途径。

轧辊堆焊是指去除轧辊表面的疲劳层或缺陷后,用合适的堆焊材料、采用科学的工艺方法将其修复至原始辊径的过程,它的主要优点是轧辊使用前后的辊径不变。因此轧辊堆焊技术为轧辊生产中降低轧辊消耗、提高轧辊使用寿命提供了可能。

各种堆焊技术的特点

目前在国内外冶金行业使用的堆焊技术有喷镀、气体保护焊、埋弧焊、电渣焊,其中轧辊埋弧焊是应用最广泛的工艺,具有生产效率高、质量好、经济效益较好的优点。各种工艺特点如表1。
表1 各种工艺特点

喷镀
气体保护焊
埋弧焊
电渣焊

熔敷速度/kg·h-1
>20
>10
>30
200~400

堆焊厚度/mm
>4
10~20
>100
15~100

堆焊特点
单层或多层
多层
多层
多层

第一层稀释率/%
理论上为0
8~50
8~50
8~50

结合形式
机械
冶金
冶金
冶金



轧辊堆焊材料

轧辊根据其使用要求的不同,对堆焊材料的选择也不同,按其合金类型可归纳为八类:

1 低合金钢:此类合金价格便宜,堆焊金属组织以索氏体或屈氏体为主,冲击韧性好,抗裂性好,硬度HRC30~35,易于加工。具有一定的耐磨性,但不能进一步提高轧辊使用寿命。

2 热作模具钢:该类材料具有良好的红硬性、高温耐磨性及较高的冲击韧性,焊后消除应力退火后,硬度一般在HRC45~50,使用寿命比原轧辊提高1~5倍。

3 马氏体钢:焊接性能好、耐磨、耐热性能也较好,但成本较贵。

4 弥散硬化钢:15Cr3Mo2MnV等,焊态硬度HRC35~38,易加工。经560℃,保温15小时弥散硬化处理后,硬度可提高到HRC46~47。

5 奥氏体加工硬化钢:此类材料焊后硬度较低,但使用过程中由于冷加工硬化而大幅度提高。该合金系多用于深孔槽轧辊的孔型堆焊。

6 合金铸铁:这类合金具有很高的硬度和耐磨性、良好的热稳定性和抗氧化性。由于含碳很高,无法拔丝故埋弧焊很难,只能铸成管子作为电极进行电渣堆焊。堆焊轧辊比同样成分铸造辊耐磨性提高1.5~2倍,而成本比复合铸铁轧辊低1倍。

7 高碳合金钢:该类材料含炭量及合金元素较高,为防止堆焊时出现裂纹,要求较高的预热温度和层间温度,堆焊后要进行一定的热处理。

8 马氏体时效钢:该材料为Fe-Ni-Co-Mo合金系,焊态低硬度,便于加工,经时效处理硬度大为提高。

上面介绍了集中主要堆焊合金系统的可焊性、抗裂性、加工性及经济性,在具体选材时要根据轧辊类型、工作条件,预期寿命及设备条件等,进行综合分析、以选区合适的材料。
轧辊堆焊工艺

严格执行正确的轧辊堆焊工艺,是保证轧辊堆焊质量的好坏及成功与否的决定性因素。轧辊堆焊过程包括以下步骤:

1 堆焊前采用机械加工方法,对堆焊孔型进行粗加工,去除轧辊表面的疲劳层及缺陷,特别是裂纹必须彻底清除,对多次堆焊的轧辊,应经超声波探伤,检查内部情况,在确认无裂纹的情况下方可进行焊接。

2 预热

由于轧辊及堆焊材料均为含炭量和合金元素较高的材料,加之轧辊辊径大、刚性大、冷却速度快,很容易在焊接时造成脆性区,并且由于温度不均形成很大的热应力造成裂纹。为了防止裂纹的发生,堆焊前必须对轧辊进行预热,预热温度由辊身及堆焊材料成分而定。为了使轧辊表面得到均匀的硬度,预热温度应在材料的Ms点以上。为了减少热应力,加热速度也应当控制,特别是大轧辊,升温速度开始100℃采用约20℃/h,之后可为40℃/h。要求均匀加热。

3 焊接

焊接是堆焊成败的关键环节,要获得理想的堆焊层必须综合考虑某些可变因素,如:焊接电压、焊接速度、轧辊转速、轧辊的保温、焊接电流、焊接材料等,对一些含碳及合金元素高的辊芯,为防止脆性区的裂纹,除一定的预热措施外,多采用低碳低合金过渡层进行预先堆焊过渡层。

4 焊后处理

这是轧辊堆焊的最后一道工序,为了减少由于表面和内部冷速不一造成体积应力而引起裂纹,要控制冷速。一般控制冷速和加热速度大致相同,冷至100℃时要保温一定时间,冷至50℃以下可不再控制冷速。为了消除焊接残余应力,必须进行回火处理,回火温度视轧辊使用条件,一般控制在450~600℃之间。回火温度高,内应力消除彻底,但硬度降低。因而回火温度的选择,既要保证轧辊表面一定的硬度,又要尽量消除内应力。回火的保温时间通常取每一寸直径保温一小时,多在4~10小时内选取,冷却大部分是随炉缓冷,降温至150℃后可空冷。
结论

轧辊堆焊作为“复活”轧辊的一项先进技术,具有如下优点:

1 堆焊后的轧辊使用寿命普遍提高一倍以上。

2 极大的降低了吨钢成本,提高了生产效率。

3 堆焊后的轧辊具有良好的抗裂性、耐磨性、耐冷热疲劳性。


轧辊怎么修复?

轧辊修复包括将经使用磨损或去除了表面缺陷后的轧辊恢复到原始设计尺寸,修理有表面缺陷的轧辊以及把使用后的轧辊加工成用于其他机架的较小尺寸轧辊。选择定制加工轧辊认准钛浩机械,专业品质保障!因为专业,所以卓越!
常用的修复方法有:辊身表面和辊颈的堆焊;轧辊表面缺陷的车削和磨削;辊身和辊颈的镶套(红装或粘接法);断裂辊颈的熔接或铝热焊接;机械修补法。

轧辊修复
机械修补法是首先用钻孔法去除轧辊表面的缺陷,然后将金属销或楔嵌入钻孔并将孔填满,使金属自身销紧弥合;或者在轧辊表面裂纹的两边钻孔并压入连接销钉,以防裂纹继续扩展。轧辊修复是降低消耗的有效措施。但修复方法的选择受轧辊品种,轧辊的受力状态,产品表面质量要求等因素的制约。

轴承位磨损
高分子复合材料修复方法:
具有超强的粘着力,优异的抗压强度、耐磨性和抗腐蚀性等综合性能,
冷焊修补方法:冷焊机是利用电火花高频放电原理对金属表面进行无热堆焊,因而在修补轧辊砂眼、划伤等缺陷过程中不变形、不退火、不咬边和残余应力,不改变金属组织状态。修复精度高,涂层厚度从几微米到几毫米,可对金属工件出现磨损、划伤、针孔、裂纹、缺损变形、硬度降低、沙眼、损伤等缺陷进行沉积、封孔、补平等修复功能,只须打磨、抛光,也可进行车、铣、 刨、磨等各类机械加工,以及电镀等后期加工。


轧辊修复方法都有哪些?

轧辊修复:机械修补法是首先用钻孔法去除轧辊表面的缺陷,然后将金属销或楔嵌入钻孔并将孔填满,使金属自身销紧弥合;或者在轧辊表面裂纹的两边钻孔并压入连接销钉,以防裂纹继续扩展。轧辊修复是降低消耗的有效措施。但修复方法的选择受轧辊品种,轧辊的受力状态,产品表面质量要求等因素的制约。轴承位磨损,高分子复合材料修复方法:具有超强的粘着力,优异的抗压强度、耐磨性和抗腐蚀性等综合性能。冷焊修补方法:冷焊机是利用电火花高频放电原理对金属表面进行无热堆焊,因而在修补轧辊砂眼、划伤等缺陷过程中不变形、不退火、不咬边和残余应力,不改变金属组织状态。修复精度高,涂层厚度从几微米到几毫米,可对金属工件出现磨损、划伤、针孔、裂纹、缺损变形、硬度降低、沙眼、损伤等缺陷进行沉积、封孔、补平等修复功能,只须打磨、抛光,也可进行车、铣、 刨、磨等各类机械加工,以及电镀等后期加工。


磨煤辊自动堆焊机堆焊机工作原理

由于磨煤辊需要强化堆焊的面积较大,所以堆焊后加工量也较大,因为手工电焊的限制,较好的还是采用自动堆焊,堆焊完成后焊道平整,易加工。 技术了解 一五八六八七七九五四四
我司等离子粉末堆焊机原理,
1,粉末由焊枪自动送出,经等离子弧熔成液体状态覆盖在工件表面,由此堆焊层非常美观,焊道平整,后期打磨加工量很少,为企业的生产加工省时省力省成本。
2,等离子粉末堆焊无需对工件进行预热、抛沙等繁琐的前期工序处理,可直接堆焊在未经处理的工件表面。且结合度非常高,呈冶金结合状态。
3,由于目前冶金行业多使用电焊、氩弧焊、或者二保焊、氧乙炔等工艺,针对电焊来说,需要专业师傅操作,而且热影响较大,产品变形量较大。焊出来的焊道不平,后期加工麻烦。所受的限制很多,一次性堆的厚度不高,
4,等离子粉末堆焊一次性可堆的厚度可控,由几十丝到5mm的厚度都可一次性堆焊完成,等离子堆焊设备稀释率低,热影响小。
5,设备能实现自动化,不管手动自动,都无需请专业焊工操作,数控等离子堆焊机操作简单,普通工人培训半天即可上岗操作,工作效率快。
6,等离子粉末堆焊机适用于行业广泛,各类金属铸件修复,易损件强化,石油,阀门,电力,水泵,煤矿,船舶等行业。
1,采用DSP数字处理技术,速度快,控制精准。
2.采用独特数字你变技术,电流输出稳定,调节范围广。
3,高能电压设计,确保焊机起弧的流畅性。
4,起弧电流、基值电流可调。
5,电流上升、下降时间可调,气体延时时间可调。
6,新增数据存储功能,特适合批量化种类生产,数据一键存储、调用灵活。
7,数字通信端口,可实现焊接的远程控制。
一体机特点
1,自动化效率高,数控操作简单,集合氟利昂空调水箱,冷却水循环系统,可长时间工作,不受影响。
2,主弧电源、维弧电源、送粉控制器和制冷系统高度集成一体。
3,大功率制冷,高达2P的制冷系统,满足系统长时间、高负荷堆焊工作制冷的需求。
4,自动送粉、手动送粉,提前送分,滞后送粉均可灵活操作,采用叶轮式送粉系统,送粉均匀,不堵粉,不漏粉。
5,一体压铸型等离子焊枪,枪内水循环系统,持久工作,焊枪依然常温。压铸型焊枪,绝缘性,气密性良好,不漏电,安全性能高。
多功能数控堆焊熔覆机床
主要应用于阀门的阀座、密封圈、阀体、阀板及轴辊等一些铸件外圆和内孔等的自动化堆焊。
1,采用数字控制系统与PLC联合控制。
2,可编程操作,复杂堆焊路径一次完成,可走直线、曲线、螺纹。数据可存。
3,采用伺服电机控制,运行稳定、精准。
4,多方向调节,平面焊,锥面焊,斜面焊,内孔焊等满足不同工件需求。
5,根据不同工件的大小,配置不同吨位的卡盘及变位机。
6,系统高度集成,联动配合,一机操作,多机配合。


轧辊淬火过程中发生马氏体相变,c曲线显示其相变时间很短为什么实际过

钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,得到马氏体或贝氏体组织,然后配合以不同温度的回火,以大幅提高钢的强度、硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具的不同使用要求。也可以通过淬火满足某些特种钢材的的铁磁性、耐蚀性等特殊的物理、化学性能。淬火能使钢强化的根本原因是相变,即奥氏体组织通过相变而成为马氏体组织(或贝氏体组织)。钢淬火工艺最早的应用见于河北易县燕下都遗址出土的战国时代的钢制兵器。淬火工艺最早的史料记载见于《汉书.王褒传》中的“清水焠其峰”。“淬火”在专业文献上,人们写的是“淬火”,而读起来又称“蘸火”。“蘸火”已成为专业口头交流的习用词,但文献中又看不到它的存在。也就是说,淬火是标准词,人们不读它,“蘸火”是常用词,人们却不写它,这是我国文字中不多见的现象。淬火是“蘸火”的正词,淬火的古词为蔯火,本义是灭火,引申义是“将高温的物体急速冷却的工艺”。“蘸火”是冷僻词,属于现代词,是文字改革后出现的产物,“蘸”字本义与淬火无关。“蘸火”本词为“湛火”,“湛”字读音同“蘸”,而其字形又与水、火有关,符合“水与火合为蔯”之意,字义与“淬火”相通。“湛火”为本词,“蘸火”则为假借词。淬火quenching将金属工件加热到某一适当温度并保持一段时间,随即浸入淬冷介质中快速冷却的金属热处理工艺。常用的淬冷介质有盐水、水、矿物油、空气等。淬火可以提高金属工件的硬度及耐磨性,因而广泛用于各种工、模、量具及要求表面耐磨的零件(如齿轮、轧辊、渗碳零件等)。通过淬火与不同温度的回火配合,可以大幅度提高金属的强度、韧性及疲劳强度,并可获得这些性能之间的配合(综合机械性能)以满足不同的使用要求。另外淬火还可使一些特殊性能的钢获得一定的物理化学性能,如淬火使永磁钢增强其铁磁性、不锈钢提高其耐蚀性等。淬火工艺主要用于钢件。常用的钢在加热到临界温度以上时,原有在室温下的组织将全部或大部转变为奥氏体。随后将钢浸入水或油中快速冷却,奥氏体即转变为马氏体。与钢中其他组织相比,马氏体硬度最高。钢淬火的目的就是为了使它的组织全部或大部转变为马氏体,获得高硬度,然后在适当温度下回火,使工件具有预期的性能。淬火时的快速冷却会使工件内部产生内应力,当其大到一定程度时工件便会发生扭曲变形甚至开裂。为此必须选择合适的冷却方法。根据冷却方法,淬火工艺分为单液淬火、双介质淬火、马氏体分级淬火和贝氏体等温淬火4类。淬火效果的重要因素,淬火工件硬度要求和检测方法:淬火工件的硬度影响了淬火的效果。淬火工件一般采用洛氏硬度计,测试HRC硬度。淬火的薄硬钢板和表面淬火工件可测试HRA的硬度。厚度小于0.8mm的淬火钢板、浅层表面淬火工件和直径小于5mm的淬火钢棒,可改用表面洛氏硬度计,测试HRN硬度。在焊接中碳钢和某些合金钢时,热影响区中可能发生淬火现象而变硬,易形成冷裂纹,这是在焊接过程中要设法防止的。由于淬火后金属硬而脆,产生的表面残余应力会造成冷裂纹,回火可作为在不影响硬度的基础上,消除冷裂纹的手段之一。淬火对厚度、直径较小的零件使用比较合适,对于过大的零件,淬火深度不够,渗碳也存在同样问题,此时应考虑在钢材中加入铬等合金来增加强度。淬火是钢铁材料强化的基本手段之一。钢中马氏体是铁基固溶体组织中最硬的相(表1),故钢件淬火可以获得高硬度、高强度。但是,马氏体的脆性很大,加之淬火后钢件内部有较大的淬火内应力,因而不宜直接应用,必须进行回火。表1钢中铁基固溶体的显微硬度值淬火工艺在现代机械制造工业得到广泛的应用。机械中重要零件,尤其在汽车、飞机、火箭中应用的钢件几乎都经过淬火处理。为满足各种零件干差万别的技术要求,发展了各种淬火工艺。如,按接受处理的部位,有整体、局部淬火和表面淬火;按加热时相变是否完全,有完全淬火和不完全淬火(对于亚共析钢,该法又称亚临界淬火);按冷却时相变的内容,有分级淬火,等温淬火和欠速淬火等。工艺过程包括加热、保温、冷却3个阶段。下面以钢的淬火为例,介绍上述三个阶段工艺参数选择的原则。加热温度以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。碳素钢的淬火加热温度范围如图1所示。由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。亚共析钢加热温度为Ac3温度以上30~50℃。从图上看,高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变成奥氏体,即为不完全(或亚临界)淬火。过共析钢淬火温度为Ac1温度以上30~50℃,这温度范围处于奥氏体与渗碳体(A+C)双相区。因而过共析钢的正常的淬火仍属不完全淬火,淬火后得到马氏体基体上分布渗碳体的组织。这-组织状态具有高硬度和高耐磨性。对于过共析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。淬火后,粗大马氏体组织使钢件淬火态微区内应力增加,微裂纹增多,零件的变形和开裂倾向增加;由于奥氏体碳浓度高,马氏体点下降,残留奥氏体量增加,使工件的硬度和耐磨性降低。常用钢种淬火的温度参见表2。表2常用钢种淬火的加热温度实际生产中,加热温度的选择要根据具体情况加以调整。如亚共析钢中碳含量为下限,当装炉量较多,欲增加零件淬硬层深度等时可选用温度上限;若工件形状复杂,变形要求严格等要采用温度下限。保温时间由设备加热方式、零件尺寸、钢的成分、装炉量和设备功率等多种因素确定。对整体淬火而言,保温的目的是使工件内部温度均匀趋于一致。对各类淬火,其保温时间最终取决于在要求淬火的区域获得良好的淬火加热组织。加热与保温是影响淬火质量的重要环节,奥氏体化获得的组织状态直接影响淬火后的性能。-般钢件奥氏体晶粒控制在5~8级。冷却方法要使钢中高温相——奥氏体在冷却过程中转变成低温亚稳相——马氏体,冷却速度必须大于钢的临界冷却速度。工件在冷却过程中,表面与心部的冷却速度有-定差异,如果这种差异足够大,则可能造成大于临界冷却速度部分转变成马氏体,而小于临界冷却速度的心部不能转变成马氏体的情况。为保证整个截面上都转变为马氏体需要选用冷却能力足够强的淬火介质,以保证工件心部有足够高的冷却速度。但是冷却速度大,工件内部由于热胀冷缩不均匀造成内应力,可能使工件变形或开裂。因而要考虑上述两种矛盾因素,合理选择淬火介质和冷却方式。冷却阶段不仅零件获得合理的组织,达到所需要的性能,而且要保持零件的尺寸和形状精度,是淬火工艺过程的关键环节。分类可按冷却方式分为单液淬火、双液淬火、分级淬火和等温淬火等。冷却方式的选择要根据钢种、零件形状和技术要求诸因素。单液淬火将工件加热后使用单一介质冷却,最常使用的有水和油两种,其变、温曲线如图2中的曲线1。为防止工件过大的变形和开裂,工件不宜在介质中冷至室温,可在200~300℃出水或油,在空气中冷却。单液淬火操作简单易行,广泛用于形状简单的工件。有时将工件加热后,先在空气中停留-段时间,再淬入淬火介质中,以减少淬冷过程中工件内部的温差,降低工件变形与开裂的倾向,称为预冷淬火。图2各种淬火冷却的变温曲线示意图曲线1-单液淬火;曲线2-双液淬火;曲线3-分级淬火;曲线4-等温淬火双液淬火工件加热后,先淬入水或其他冷却能力强的介质中冷却至400℃左右,迅速转入油或其他冷却能力较弱的介质中冷却。变温曲线如图2中曲线2。所谓“水淬油冷”法使用得相当普遍。先淬入冷却能力强的介质,工件快速冷却可避免钢中奥氏体分解。低温段转入冷却能力较弱的介质可有效减少工件的内应力,降低工件变形和开裂倾向。本工艺的关键是如何控制在水中停留的时间。根据经验,按工件厚度计算在水中停留的时间,系数为O.2~O.3s/mm,碳素钢取上限,合金钢取下限。这种工艺适用于碳素钢制造的中型零件(直径10~40mm)和低合金钢制造的较大型零件。分级淬火工件加热后,淬入温度处于马氏体点(ms)附近的介质(可用熔融硝盐、碱或热油)中,停留一段时间,然后取出空冷。变温曲线如图2中曲线3。分级温度应选择在该钢种过冷奥氏体的稳定区域,以保证分级停留过程中不发生相变。对于具有中间稳定区(“两个鼻子”)型TTT曲线的某些高合金钢,分级温度也可选在中温(400~600℃)区。分级的目的是使工件内部温度趋于一致,减少在后续冷却过程中的内应力及变形和开裂倾向。此工艺适用于形状复杂,变形要求严格的合金钢件。高速钢制造的工具淬火多用此工艺。等温淬火工件加热后,淬入温度处于该钢种下贝氏体(B下)转变范围的介质中,保温使之完成下贝氏体转变,然后取出空冷,变温曲线如图2中的曲线4。等温温度对下贝氏体性能影响较大,温度控制要求严格。常用钢种的等温温度和时间列于表3。等温淬火工艺特别适用于要求变形小、形状复杂,尤其同时还要求较高强韧性的零件。表3中国常用钢种的等温温度和等温时间


上一篇:于熙

下一篇:没有了

相关推荐

热门头条