求职简历网 > 知识 >

高温超导电机

来源:求职简历网时间:2024-03-29 09:35:11编辑:皮带君

联通3g卡,有没有送宽带的套餐

针对手机与宽带组合的优惠活动,各省分及地市都在积极开展中,比如山东用户,可以有2部3G手机并使用96元套餐,10M宽带可以免费使用;还有联通沃家庭套餐,一部3G手机+一部固话+一根宽带,组成沃家庭业务,账户内成员之间享受电话免费拨打,宽带享受免费提速等,建议可以拨打10010人工客服,由工作人员详细为你介绍。或者直接到联通自有营业厅临柜咨询。


用超导体做成的电动机是否符合能量守恒定律

超导体的电阻为0,不是接近0,它是的的确确为0!!!

电动机的工作原理是电流通过线圈,而线圈处在一个磁场中。众所周知,通电导线在磁场中会受到安培力,正是这个安培力使线圈转动起来。这样,电动机就实现了电能转化为机械能的任务。对于普通的线圈,都有电阻,因此一部分电能转化为机械能,而还有一部分电能用于线圈发热。发热功率P=RI^2(R是线圈电阻,I是流过电动机的电流)。而输入电动机的总功率P=UI(U是加在电动机两端的电压,I与热功率中的I相同)。所以输出的机械功率P=UI-RI^2。当然,输出的机械能有一部分还用于克服线圈转动的摩擦等。

如果电动机用超导体来做,只不过是将上面的R用0代入就可(超导体R=0),由此可见,用超导体做成的电动机只是将热功率变为0,也就是说,可以提高电动机的效率,减小不必要的能量损耗。超导体中通入电流,同样会受到安培力,因此,并不影响线圈的转动,也就是说超导电动机同样消耗电能(消耗电能E=UIt,t是工作时间),线圈转动动能仍然是电能转化而来的。超导体只可以避免发热。


高温超导体和传统超导体有什么不同?

摘要:超导技术是21世纪具有战略意义的综合性高新技术,可广泛用于能源、信息、医疗、交通、国防、科学研究及国防军工等重大工程方面。[1]本文简要地回顾了高温超导材料的产生和制备以及新兴超导体的研究进展,并有选择性地重点介绍了一些比较成熟的超导体应用。



关键词:超导技术 高温超导材料 MgB2 钇钡铜氧复合物 YBCO



一、超导技术的产生与发展

超导技术作为节能的一项新技术及其所具备的环保特性将成为二十一世纪的核心技术。它的发展经历了三个阶段:

1、第一阶段是人们对于超导电性的基本认识、探索以及BCS理论的问世。

1911年,Onnes发现Hg的电阻在4.15K时突降到当时的仪器精度已无法测出的程度,即Hg在一确定的临界温度Tc=4.15K以下将丧失其电阻。随后,人们在Pb及其它材料中也发现这种特性:在满足临界条件(临界温度Tc、临界电流Ic、I临界磁场Hc)时物质的电阻突然消失,即为超导电性的零电阻现象。超导体的另一个基本特性是完全抗磁性。也就是说超导体在处于超导状态时,可以完全排除磁力线的进入。[2]这个现象是迈斯纳(Meissner)和奥克森费尔德(Oschenfeld)在1933年发现的,所以称做迈斯纳效应。这就是超导体的两个基本特性。1954年贝尔实验室的B.T.Matthias研究组发现了Nb3Sn合金超导材料,使60年代出现了超导的黎明期,但是它需要在很低的温度下(液氦中)才显现超导性。

2、第二阶段从1958到1986年高温氧化物U—Ba—Cu—0被发现之前,这是人类对超导应用技术准备性的探索阶段,于实验室规模上许多国家大力尝试了超导的应用; 1961年J.J.E.Kunzler用过量锡的银、锡混合粉末充填到银管中加工成线材,经热处理后在4.2K,8.8T下Ic达1.5×105A/cm2。此后很长一段时间Tc=23.3K的Nb3Ge被看作是极限值了。

3、第三阶段是1986年发现高温铜氧化物,揭开了人类对超导技术开发的序幕。苏黎世科学家J.G.Bendnorz等人在1986年发现的镧银铜复合氧化物达到30K,突破了传统的BCS理论引起了世界范围的巨大反响。[3]人们又开始寻找更高临界温度的超导材料。随后1987年美国休斯敦大学的朱经武等发现钇钡铜氧复合氧化物(YBCO)超导临界温度(Tc=93K)超过液氮温度(b.p=77K),引起了世界轰动;因为以前实际应用的超导体大多是使用液氦作为冷却剂,液氦的价格很高,这就阻碍了超导技术的应用。而液氮很廉价且容易得到(是氧气制备的副产物)。[4]1988年又有超导转变温度分别为110K和125K的铋-锶-钙-铜-氧和铊-钡-钙-铜-氧超导体被发现。1993年,人们发现了超导临界转变温度为133K的汞-钡-钙-铜-氧。



二、超导高温铜氧化物(YBCO)和二硼化镁(MgB2)的制备与性能

1、现在高温铜氧化物已经是目前研究较多的超导材料,在研究其超导性的同时人们对超导体的制备和加工进行了详细的研究。国外内的研究表明要制得高性能的YBCO,就必须先制备YBCO 纳米粉末获得100 nm左右的超细粉, 这将大大提高YBCO 材料的分散度和均匀性, 从本质上提高YBCO 材料的性能。[4]

YBCO 粉末的制备方法有Sol—Gel 、化学热解法。将Y2O3 (99. 99 %) , BaCO3 (99. 9 %) , CuO(99. 9 %)等混合在辅料的参与下烧结成型使金属达到离子级混合, 燃烧后的氧化物形成均匀的单相,生成颗粒均匀的粉末。这种方法重复性好, 是目前比较简单又有效的制备YBCO 纳米粉技术,然后将纳米粉末压制成型即可得初步的超导体。但YBCO有其自身的缺点:构成氧化物高温超导体的化学元素昂贵,合成的超导材料脆性大,难以加工成线材,使其应用受到极大的局限。

2、应运而生的另一种新型的高温超导材料是二硼化镁。[5]2001年日本青山学院(Aoyama Gakuin) 秋光纯教授(Jun Akimitsu) 在日本仙台召开的“过渡金属氧化物”学术会议上宣布发现了MgB2的高温超导性能,其临界温度Tc = 39 K, 从而轰动了整个超导材料界和凝聚态物理界,又掀起了研究简单化合物超导特性的热潮。它是一种简单的二元化合物,属六方晶系、AlB2 型简单六方结构。秋光纯教授就是将纯度为99.19 %的镁粉与纯度为99 %的无定形硼粉按1∶2的比例混合,压制成小球后在高压氮气中加热反应得到MgB2。也可以利用钛和硼的燃烧反应热引发镁(b.p.650℃)与硼(b.p.2080℃)的燃烧合成反应,在真空中于极短时间内生成MgB2,从而最大程度地抑制了镁的氧化和蒸发,使得MgB2超导材料的生成过程简易化。镁与硼的组成比大致稳定化,并可望提高该材料的超导性能,利用这种方法生产MgB2超导材料的耗时短,可望进一步降低成本。[6]

MgB2是迄今发现的临界温度最高的简单、稳定的金属化合物超导材料,也是一种更有希望实用化的超导材料。对二硼化镁超导体性质的研究进展非常迅速,对二硼化镁超导体机理的认识也不断深化。

理论计算表明,在二硼化镁中有不只一个能带跨越费米面,而且电声耦合所造成的费米面失稳完全可能在两个能带的费米面处产生能隙,这一点是二硼化镁超导体与传统超导体非常不同之处。首先,MgB2超导体在20 K左右的温度和在8万倍于地球磁场的情况下可以承载很大的超导电流而且能耗极低。其次,二硼化镁材料的价格很低,而且远比陶瓷特性的氧化物高温超导体容易加工成型。还有二硼化镁基超导材料的最大特征是:易合成,易加工,具有较好的应用前景。与氧化物高温超导体不同,二硼化镁基超导材料容易制成薄膜或线材。



三、超导体的应用

以上简要介绍了两种重要的超导材料——YBCO和MgB2[7]的制备方法和性能。它们在很多领域已经有了应用,如用超导材料做成磁性极强的超导磁铁、超导体产生的磁场来研究生物体内的结构及用于对人的各种复杂疾病的治疗等。在实用方面,美、日、中等国都不遗余力地开展这方面研究并取得明显成效,现已进入实用化的应用开发研究阶段。

1、超导磁铁磁性的应用[8]

超导磁悬浮列车是超导技术应用最为成功的例子。和常导型磁悬浮列车比较,低温超导型磁悬浮列车有许多优点,其一,超导体可以流过很大的电流,超导磁体的磁场要比常规电磁体的强;其二,超导体几乎没有电阻,损耗极小。一次通入电流用以励磁之后,即可去掉电源,只需维持其低温工作环境以保证它不失超。从长期使用的角度来看,超导磁体的能耗小、成本低,是一种理想的磁体。超导磁体由于其零电阻的特性,在处于超导状态时几乎不产生热,因此在不失超的情况下,通过超导磁体的电流可以很大而又不产生能量消耗,实现强磁场低能耗的要求;其三,重量轻,体积小、污染小、爬坡能力强。

超导磁铁另一重要应用是在核聚变反应堆" 磁封闭体"。[9]核聚变反应时,内部温度高达1亿~2亿℃,没有任何常规材料可以包容这些物质。而超导体产生的强磁场可以作为"磁封闭体",将热核反应堆中的超高温等离子体包围、约束起来,然后慢慢释放,从而使受控核聚变能源成为本世纪前景广阔的新能源。

2、超导计算机[10]

用超导隧道效应制成的约瑟夫逊器件进行各种高精密仪器的制作成为可能。目前的计算机大多采用半导体技术,硅集成电路技术起了很大的作用,如英特尔和AMD的处理器采用高纯硅。但要想继续提高计算机的性能和计算速度,能量消耗是一个限制因素,若在硅集成电路中提高计算速度,必然造成芯片的发热,这些热量会对半导体材料产生不良影响。[10]

超导隧道结(又称约瑟夫逊器件)可以解决这一矛盾。在超导体中,表达有零电压和非零电压两种状态只需要10-10 秒,这样可使计算机运算速度提高一个数量级以上。这样超导计算机在无阻不发热的情况下高效率运行,其运行速度可达到每秒几十亿次。其次它的输出电压高,这意味着它输出的信号强,这一点可以获得更加稳定、更加清晰的图象与数据,使目前使用的电脑在图象质量、清晰度及稳定性方面相形见绌。还有超导计算机功率损耗小,估计一次快速开关期间消耗的能量小于10-13 焦耳,这样使计算机内部几乎不发热,这一点对提高计算机的稳定性和延长计算机芯的寿命都非常重要。可以想象在本世纪,谁先研制出超导技术计算机,谁将主宰计算机行业乃至世界经济。

3、超导在军事领域的应用

用超导高温铜氧化物做成的超导磁场计可分辨10-14 -10-15 特斯拉如此微弱的磁场。它的测量精度比其它普通电磁仪器高3- 4个数量级,因此它可以测量极弱的磁场及磁场的微小的变化,可以用它来测量地雷和水雷,使测量的准确性大大提高。另外,我们在水雷上可安装超导磁强计作为追踪器。军事上把这种水雷称为超导磁性水雷,它的命中率将远远高于其它水雷。在国防上也可以用超导磁强计来探测沿海的各种船只,特别是潜艇的动向,当潜艇靠近海岸时,破坏了地磁分布,这时超导磁强计可立即显示磁场的变化,这个反潜方法比其它方法准确得多,一是测量精度高,二是这种方法是被动的 ,它能发现潜艇而潜艇不能发现它。

现在美、英等国已将性能优越的超导电机作为舰船电力推动的理想动力设备,分别投入了大量的精力进行开发研究,成功进行了2200KW和1000KW超导单机直流电推进系统的实船试验,同时进行了30MW和50MW的大容量超导单机在大型驱逐舰和破冰船上详细设计。超导体应用于舰船,最大的优点是大幅度提高功率密度减小电机重量,减小动力设备所占空间可以用来多放置其他战斗设备,提高战斗的机动性和能力。[11]另外超导电机发出的电压不含谐波,不会被其他船只或潜艇发觉。

超导材料在其他方面还有很广泛的应用,如超导储能磁体的开发与应用、带有超导磁体的同步加速器、超导核磁共振层析成像仪等。



四、总结

2001年世界银行的国际超导工业峰会上预测,到2020年世界超导产品的销售总额将达2440亿美元。超导材料如果能够进一步在常温实现突破,那么它所带来的影响不亚于另一场工业革命。[12]无机化学现在面临的一个任务就是寻求常温超导体,在常温下实现超导。有理由相信在未来的几十年里,超导材料不仅是解决能源危机的重要手段,使可控核聚变成为新的干净的能源同时极大地减少原来因导体的电阻而损失的电能。[13]同时超导材料是新型技术、新兴学科产生和发展的平台。可以说,超导体将会深刻地影响和改变我们生活。













参考文献:



[1]、超导材料实用化50年的回顾 稀有金属快报 2003年,1: 10

[2]、任清褒,朱维好超导电性及其应用的研究现状和前景 JOUBNAIJ 0F IJISHUI TEACHEBS COIJIJEGE 2002年10月 Oct.2002(8): 30

[3]、缪蕊平1 , 齐秀贞1 , 赵勇2 Journal of Fuzhou University(Natural Science) Vol. 33 No. 1 Feb. 2005 : 94-99

[4]、朱文详 中级无机 高等教育出版社 2004 265-268

[5]、黄勇 刘心宇 曾中明 MgB2基超导材料研究进展 2002,25(1): 31-36

[6]、王淑芳 周岳亮 朱亚斌 刘震 张芹 陈正豪 吕惠宾 杨国板 化学气相沉积制备MgB2超导薄膜 低温物理学报 2003,25增刊: 230-233

[7]、王梅,徐志杰,苏希玉 硼化镁超导体的掺杂性质 曲阜师大学报 2003, 26(2):52-54

[8]、汪京荣 吴晓祖 周廉 高温超导磁悬浮与飞轮储能 Tsinghua Tongfang Optical Disc Co., Ltd. :226-233

[9]、比尔·李 超导技术及其应用 新科技启蒙 2005

[10]、高 温 超 导 云电英纳超导电缆网 2004

[11]、唐绍栋 高温超导交流同步电动机 船电技术 2004, 1: 4-9

[12]、白杉 2l世纪电力最重要的节能树料 能源通讯 2002,2:10

[13]、 吴欧 2003诺贝尔物理学得主 ——无阻之流 南方网综合


超导材料有哪些?

超导材料是一种在一定条件下,能排斥磁力线且呈现出电阻为零的特性的新型材料。目前,已发现有46种元素和几千种合金、化合物可以成为超导材料。超导材料根据临界转变温度可分为低温超导材料和高温超导材料。低温超导材料主要有NbTi 和Nb3Sn 材料等,高温超导材料主要有Bi-Sr-Ca-Cu-O(BSCCO)和Y-Ba-Cu-O(YBCO)材料、MgB2超导材料、铁基超导材料等。超导材料根据临界转变温度的不同可分为低温超导材料和高温超导材料。低温超导材料主要有NbTi 和Nb3Sn 材料;高温超导材料主要有Bi-Sr-Ca-Cu-O(BSCCO)和Y-Ba-Cu-O(YBCO)材料、MgB2超导材料、铁基超导材料。尽管已经发现了数万种超导体,但真正具有实用价值的超导体并不多。得到应用的低温超导体主要包括NbTi、Nb3Sn、Nb3Al等,其制备技术与工艺已经相当成熟,并推动了加速器磁体、核聚变工程用超导磁体、核磁共振(MRI和NMR)磁体、通用超导磁体等应用领域的发展。具有实用价值的高温超导体主要包括铋系(BSCCO,第一代高温超导材料)和钇系(YBCO或ReBCO,第二代高温超导材料)。进入21世纪以来,MgB2和铁基超导体相继被发现,成为两种新的具有实际应用潜力的超导体。来源:《揭秘未来100大潜力新材料(2019年版)》_新材料在线

超导体有哪些?

超导体:指没有电阻的导电材料,一般某些材料在低温下具有超导性。  1911年,荷兰科学家卡末林—昂内斯((Heike Kamerlingh-Onnes)用液氦冷却汞,当温度下降到4.2K时,水银的电阻完全消失,这种现象称为超导电性,此温度称为临界温度。根据临界温度的不同,超导材料可以被分为:高温超导材料和低温超导材料[1]。但这里所说的「高温」,其实仍然是远低于冰点0℃的,对一般人来说算是极低的温度。1933年,迈斯纳和奥克森菲尔德两位科学家发现,如果把超导体放在磁场中冷却,则在材料电阻消失的同时,磁感应线将从超导体中排出,不能通过超导体,这种现象称为抗磁性。经过科学家们的努力,超导材料的磁电障碍已被跨越,下一个难关是突破温度障碍,即寻求高温超导材料。
  1973年,发现超导合金――铌锗合金,其临界超导温度为23.2K,这一记录保持了近13年。
  1986年,设在瑞士苏黎世的美国IBM公司的研究中心报道了一种氧化物(镧钡铜氧化物)具有35K的高温超导性。此后,科学家们几乎每隔几天,就有新的研究成果出现。
  1986年,美国贝尔实验室研究的超导材料,其临界超导温度达到40K,液氢的“温度壁垒”(40K)被跨越。
  1987年,美国华裔科学家朱经武以及中国科学家赵忠贤相继在钇-钡-铜-氧系材料上把临界超导温度提高到90K以上,液氮的“温度壁垒”(77K)也被突破了。1987年底,铊-钡-钙-铜-氧系材料又把临界超导温度的记录提高到125K。从1986-1987年的短短一年多的时间里,临界超导温度提高了近100K。
  来自德国、法国和俄罗斯的科学家利用中子散射技术,在高温超导体的一个成员单铜氧层Tl2Ba2CuO6+δ中观察到了所谓的磁共振模式,进一步证实了这种模式在高温超导体中存在的一般性。该发现有助于对铜氧化物超导体机制的研究。
  高温超导体具有更高的超导转变温度(通常高于氮气液化的温度),有利于超导现象在工业界的广泛利用。高温超导体的发现迄今已有16年,而对其不同于常规超导体的许多特点及其微观机制的研究,却仍处于相当“初级”的阶段。这一点不仅反映在没有一个单一的理论能够完全描述和解释高温超导体的特性,更反映在缺乏统一的、在各个不同体系上普遍存在的“本征”实验现象。本期Science所报道的结果意味着中子散射领域里一个长期存在的困惑很有可能得到解决。
  早在1991年,法国物理学家利用中子散射技术在双铜氧层YBa2Cu3O6+δ超导体单晶中发现了一个微弱的磁性信号。随后的实验证明,这种信号仅在超导体处于超导状态时才显著增强并被称为磁共振模式。这个发现表明电子的自旋以某种合作的方式产生一种集体的有序运动,而这是常规超导体所不具有的。这种集体运动有可能参与了电子的配对,并对超导机制负责,其作用类似于常规超导体内引起电子配对的晶格振动。但是,在另一个超导体La2-xSrxCuO4+δ(单铜氧层)中,却无法观察到同样的现象。这使物理学家怀疑这种磁共振模式并非铜氧化物超导体的普遍现象。1999年,在Bi2Sr2CaCu2O8+δ单晶上也观察到了这种磁共振信号。但由于Bi2Sr2CaCu2O8+δ与YBa2Cu3O6+δ一样,也具有双铜氧层结构,关于磁共振模式是双铜氧层的特殊表征还是“普遍”现象的困惑并未得到彻底解决。
  理想的候选者应该是典型的高温超导晶体,结构尽可能简单,只具有单铜氧层。困难在于,由于中子与物质的相互作用很弱,只有足够大的晶体才可能进行中子散射实验。随着中子散射技术的成熟,对晶体尺寸的要求已降低到0.1厘米3的量级。晶体生长技术的进步,也使Tl2Ba2CuO6+δ单晶体的尺寸进入毫米量级,而它正是一个理想的候选者。科学家把300个毫米量级的Tl2Ba2CuO6+δ单晶以同一标准按晶体学取向排列在一起,构成一个“人造”单晶,“提前”达到了中子散射的要求。经过近两个月散射谱的搜集与反复验证,终于以确凿的实验数据显示在这样一个近乎理想的高温超导单晶上也存在磁共振模式。这一结果说明磁共振模式是高温超导的一个普遍现象。而La2-xSrxCuO4+δ体系上磁共振模式的缺席只是“普遍”现象的例外,这可能与其结构的特殊性有关。
  关于磁共振模式及其与电子间相互作用的理论和实验研究一直是高温超导领域的热点之一,上述结果将引起许多物理学家的关注与兴趣。
  20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。
  1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。
  1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。
  自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。
  1997年,研究人员发现,金铟合金在接近绝对零度时既是超导体同时也是磁体。1999年科学家发现钌铜化合物在45K时具有超导电性。由于该化合物独特的晶体结构,它在计算机数据存储中的应用潜力将是非常巨大的。
  自2007年12月开始,中国科学院物理研究所的陈根富博士已投入到镧氧铁砷非掺杂单晶体的制备中。今年2月18日,日本东京工业大学的细野秀雄教授和他的合作者在《美国化学会志》上发表了一篇两页的文章,指出氟掺杂镧氧铁砷化合物在零下247.15℃时即具有超导电性。在长期研究中保持着跨界关注习惯的陈根富和王楠林研究员立即捕捉到了这一消息的价值,王楠林小组迅速转向制作掺杂样品,他们在一周内实现了超导并测量了基本物理性质。
  几乎与此同时,物理所闻海虎研究组通过在镧氧铁砷材料中用二价金属锶替换三价的镧,发现有临界温度为零下248.15℃以上的超导电性。
  3月25日和3月26日,中国科学技术大学陈仙辉组和物理所王楠林组分别独立发现临界温度超过零下233.15℃的超导体,突破麦克米兰极限,证实为非传统超导。
  3月29日,中国科学院院士、物理所研究员赵忠贤领导的小组通过氟掺杂的镨氧铁砷化合物的超导临界温度可达零下221.15℃,4月初该小组又发现无氟缺氧钐氧铁砷化合物在压力环境下合成超导临界温度可进一步提升至零下218.15℃。
  为了证实(超导体)电阻为零,科学家将一个铅制的圆环,放入温度低于Tc=7.2K的空间,利用电磁感应使环内激发起感应电流。结果发现,环内电流能持续下去,从1954年3月16日始,到1956年9月5日止,在两年半的时间内的电流一直没有衰减,这说明圆环内的电能没有损失,当温度升到高于Tc时,圆环由超导状态变正常态,材料的电阻骤然增大,感应电流立刻消失,这就是著名的昂尼斯持久电流实验。


非常温超导体一般用在什么地方?

目前有低温超导,高温超导。
常温超导好像正在研究
1911年,卡茂林-昂尼斯意外地发现,将汞冷却到-268.98℃时,汞的电阻突然消失;
1986年柏诺兹和缪勒发现了35K 超导的镧钡铜氧体系;
1987年初美国吴茂昆(朱经武)等和我国物理所赵忠贤等宣布了90K 钇钡铜氧超导体的发现,第一次实现了液氮温度(77 K)这个温度壁垒的突破。柏诺兹和缪勒也因为他们的开创性工作而荣获了1987年度诺贝尔物理学奖;
1987年底,我国留美学者盛正直等首先发现了第一个不含稀土的铊钡铜氧高温超导体;
1988 年初日本研制成临界温度达110K的铋锶钙铜氧超导体;
1988年2月盛正直等又进一步发现了125K 铊钡钙铜氧超导体;
1993年 法国科学家发现了 135K 的汞钡钙铜氧超导体
至此,高温超导体包括四大类:90K的稀土系,110K的铋系,125K的铊系,和135K的汞系。它们都含有铜和氧,因此也总称为铜氧基超导体。它们具有类似的层状结晶结构,铜氧层是超导层。高温超导体已经取得了实际应用,开始为人类造福。例如,钇钡铜氧超导体和铋系超导体已制成了高质量的超导电缆


超导材料的用途主要有哪些?

利用超导材料制成的仪器可以探测很微弱的磁场,因而可侦察遥远的目标,如潜艇、坦克的活动。而超导体开关对某些辐射非常敏感,可探测微弱的红外线辐射,为军事指挥作出正确判断并提供直接的依据,为探测天外飞行器,如卫星或宇宙不明飞行物提供高灵敏度的信息。使用超导材料制作计算机元件可使计算机的体积大大缩小,功耗显著降级,运用超导数据处理器可以使计算机获得高速处理能力,其速度是现有大型电子计算机运算速度的15倍。用超导技术制成的核潜艇的超轻型推进系统能使核潜艇的速度和武器装载量增加一倍,而核潜艇的自身重量减小一半,可谓一举两得;火箭发射的初期必须在发射架上滑行,由于机械接触,速度越快,振动越激烈,容易损坏发射架,因此必须限制火箭的发射速度。而利用超导抗磁性产生的悬浮技术,使火箭通过电线圈沿轨道发射,可以产生强大的电磁力,从而使火箭全速升空。

高温超导材料是什么原理?低温呢?

  关于超导:
  1911年,荷兰莱顿大学的卡茂林·昂尼斯意外地发现,将汞冷却到-268.98°C时,汞的电阻突然消失;后来他又发现许多金属和合金都具有与上述汞相类似的低温下失去电阻的特性,由于它的特殊导电性能,卡茂林·昂尼斯称之为超导态。卡茂林由于他的这一发现获得了1913年诺贝尔奖。
  这一发现引起了世界范围内的震动。在他之后,人们开始把处于超导状态的导体称之为“超导体”。超导体的直流电阻率在一定的低温下突然消失,被称作零电阻效应。导体没有了电阻,电流流经超导体时就不发生热损耗,电流可以毫无阻力地在导线中形成强大的电流,从而产生超强磁场。
  关于高温超导体:
  20世纪80年代是超导电性的探索与研究的黄金年代。1981年合成了有机超导体,1986年缪勒和柏诺兹发现了一种成分为钡、镧、铜、氧的陶瓷性金属氧化物LaBaCuO4,其临界温度约为35K。由于陶瓷性金属氧化物通常是绝缘物质,因此这个发现的意义非常重大,缪勒和柏诺兹因此而荣获了1987年度诺贝尔物理学奖。

  1987年在超导材料的探索中又有新的突破,美国休斯顿大学物理学家朱经武小组与中国科学院物理研究所赵忠贤等人先后研制成临界温度约为90K的超导材料YBCO(钇铋铜氧)。

  1988年初日本研制成临界温度达110K的Bi-Sr-Ca-Cu-O超导体。至此,人类终于实现了液氮温区超导体的梦想,实现了科学史上的重大突破。这类超导体由于其临界温度在液氮温度(77K)以上,因此被称为高温超导体。

  自从高温超导材料发现以后,一阵超导热席卷了全球。科学家还发现铊系化合物超导材料的临界温度可达125K,汞系化合物超导材料的临界温度则高达135K。如果将汞置于高压条件下,其临界温度将能达到难以置信的164K。


高温超导磁悬浮原理

超导磁悬浮是利用 磁铁的 同极相斥 原理制造的,同时必须达到速度才可以建立起稳定的波浪电场。超导磁系列主要为日本制造的。现目前还没有正式投入使用的铁路

但要记住,上海龙阳路到浦东机场的磁悬浮列车,是德国,也就是德意志的技术,是常导磁系列,他没有利用磁铁的是否同极还是异极的问题

他是利用,磁铁对钢铁材料的吸引作用实现悬浮的,而电磁铁只能让他保持悬浮而不可以前进, 从而车上还有一个直线电机(相当于把电动机的绕组铺平)产生直线涡流,这个涡流由线圈作用于轨道上的感应钢板而前进。

所以,轨道不需要通电,轨道上只有感应钢板,感应钢板不仅作为车中电磁铁吸引感应钢板使其悬浮的作用,还具有使直线电机与感应钢板之间建立涡流而前进和制动的作用。(制动也是利用直线电机,利用电涡流效应)


超导磁悬浮车身必须是超导磁体,超导磁悬浮列车具有比常导型更高的速度,但同时相对的说,他看起来也更加的不太安全。

因为列车并不和常导型的那种那样扣在轨道上,而是悬浮于轨道上空,和轨道没有任何接触(这里指扣件),所以如果高速时候,假设轨道(超导型的轨道必须通电,就是说轨道有电磁铁)或车上任何一方电力中断,就会导致车辆脱离轨道,虽然日本人说这些事不会发生,但假设发生了怎么办?


但他可以轻松超过500公里的速度,而常导的一般就在400多公里速度几乎是极限了。但他由于是扣在轨道上,即使再严重事故,最多是车体和轨道摩擦,而不会脱落,除非扣件被彻底损坏,但那是车梁,也不容易损坏


鉴于这些那些的优点,超导磁悬浮列车就是利用目前书本常说的,利用磁铁的同性相斥原理制造的,但必须达到80公里左右,磁场才可以达到足够的波浪状滚转,使其稳定悬浮并且前进,他不需要使用直线电机,而且相比于常导的,拥有更加节能的特性(仅看车的一方,由于轨道通电,所以事实上也不节能)

但缺点比起常导的要多得多,最重要的就是安全了。还有就是轨道需要通电,消耗大量电能。




这些磁悬浮只分 超导磁和常导磁 两类

超导磁的意思就是说,他是将电磁铁线圈冷冻,让线圈电阻几乎为0,形成超导。从而几乎不发热。


常导磁就是普通环境下的电磁铁了

高温还是低温超导磁的意思其实是说,,该磁铁在那个温度时候,他的绕组线圈可以形成超导,比如通常都需要-200度一下,但开发出的新材料,却可以让他在-170度左右实现超导,从而减小制冷机组的负载


超导体是有什么作用和用途?

超导体的应用可分为三类:强电应用、弱电应用和抗磁性应用。强电应用即大电流应用,包括超导发电、输电和储能;弱电应用即电子学应用,包括超导计算机、超导天线、超导微波器件等;抗磁性应用主要包括磁悬浮列车和热核聚变反应堆等。超导磁体可用于制作交流超导发电机、磁流体发电机和超导输电线路等。目前超导量子干涉仪(SQUID)已经产业化。 另外,作为低温超导材料的主要代表NbTi合金和Nb3Sn,在商业领域主要应用于医学领域的MRI(核磁共振成像仪)。作为科学研究领域,已经应用于欧洲的大型项目LHC项目,帮助人类寻求宇宙的起源等科学问题。扩展资料人类最初发现超导体是在1911年,这一年荷兰科学家海克·卡末林·昂内斯(Heike Kamerlingh Onnes)等人发现。汞在极低的温度下,其电阻消失,呈超导状态。此后超导体的研究日趋深入,一方面,多种具有实用潜力的超导材料被发现,另一方面,对超导机理的研究也有一定进展。超导体具有三个基本特性:完全导电性(零电阻效应)、完全抗磁性(迈斯纳效应)、通量量子化(约瑟夫森效应)。参考资料来源:百度百科-超导体

理工学科是什么

  理工学科是指理学和工学两大学科。理工,是一个广大的领域包含物理、化学、生物、工程、天文、数学及前面六大类的各种运用与组合。
  理学
  理学是中国大学教育中重要的一支学科,是指研究自然物质运动基本规律的科学,大学理科毕业后通常即成为理学士。与文学、工学、教育学、历史学等并列,组成了我国的高等教育学科体系。
  理学研究的内容广泛,本科专业通常有:数学与应用数学、信息与计算科学、物理学、应用物理学、化学、应用化学、生物科学、生物技术、天文学、地质学、地球化学、地理科学、资源环境与城乡规划管理、地理信息系统、地球物理学、大气科学、应用气象学、海洋科学、海洋技术、理论与应用力学、光学、材料物理、材料化学、环境科学、生态学、心理学、应用心理学、统计学等。

  工学
  工学是指工程学科的总称。包含 仪器仪表 能源动力 电气信息 交通运输 海洋工程 轻工纺织 航空航天 力学生物工程 农业工程 林业工程 公安技术 植物生产 地矿 材料 机械 食品 武器 土建 水利测绘 环境与安全 化工与制药 等专业。


目前发现的超导性最高温度是多少?

1973年,人们发现了超导合金——铌锗合金,其临界超导温度为23.2K(相当于-249.95℃),该记录保持了13年。1986年,设在瑞士苏黎士的美国IBM公司的研究中心报道了一种氧化物具有35K的高温超导性,引起世界科学界的轰动。此后,科学家们争分夺秒地攻关,几乎每隔几天,就有新的研究成果出现。在1986—1987年的短短一年多的时间里,临界超导温度竟然提高了100K以上,这在材料发展史,乃至科技发展史上都堪称是一大奇迹。高温超导材料的不断问世,为超导材料从实验室走向应用铺平了道路。

目前世界上超导体的最高临界温度是多少?

高温超导材料光看临界温度不行,还得看它的加工性能,也就是能否拉成丝或加工成一定的形状,这样才有实用价值。
目前国际上实用化的高温超导材料第一代是铋基超导体,第二代是钇钡铜氧,称为钇基超导体(YBCO),临界温度90K(-183℃),后来又发现了铋锶钙铜氧超导体(BSCCO),临界温度110K(-163℃)。再后来发现的钛钡钙铜氧(TBCCO)138K(-135℃)用这种超导体已经制成超导电缆、超导磁体、超导变压器、超导电机等,超导电缆的试验已达并网试验阶段,我国在这方面也不落后,但超导线材还得进口。在这方面日本比较先进。


上一篇:thinkpade420

下一篇:没有了

相关推荐

热门头条